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The axisymmetric electrophoretic motion of a dielectric sphere along the axis of an 
orifice in a large conducting plane or of a conducting disk is considered. The radius 
of the orifice or the disk may be either larger or smaller than that of the sphere. The 
assumption of thin electrical double layers a t  the solid surfaces is employed. To solve 
the electrostatic and hydrodynamic governing equations both the electric and the 
flow fields are partitioned a t  the plane of the orifice or the disk. For each field, 
separate solutions are developed on both sides of the plane that satisfy the boundary 
conditions in each region and the unknown functions for the field a t  the fluid 
interface. The continuitics of the electric current flux and the fluid stress tensor a t  
the matching interface lead to sets of dual integral equations which are solved 
analytically to determine the unknown functions for the fields a t  the matching 
interface. Then, a boundary-collocation technique is used to satisfy the boundary 
conditions on the surface of the sphere. 

The numerical solutions for the electrophoretic velocity of the colloidal sphere are 
presented for various values of alb and a l d ,  where a is the particle radius, b is the 
radius of the orifice or the disk, and d is the distance of the particle centre from the 
plane of the wall. For the limiting case of electrophoresis of a sphere perpendicular 
to an infinite plane wall, our results for the boundary effects agree very well with the 
exact calculations using spherical bipolar coordinates. Interestingly, the electro- 
phoretic velocity of a sphere approaching an orifice of a larger radius increases 
when the sphere is close to  the orifice, and this vclocity can be even larger than that 
for an identical sphere undergoing electrophoresis in an unbounded fluid. If the 
sphere has a radius larger than that of the orifice, or if the sphere has a smaller radius 
and is located sufficiently far from the orifice, its electrophoretic mobility will 
decrease with the increase of the spacing parameter ald.  For the electrophoretic 
motion of a sphere along the axis of and close to  a disk of finite radius, the resistance 
to the particle movement can be stronger than that for an equal sphere undergoing 
clectrophoresis normal to an infinite plane wall a t  the same value of a ld .  As the 
particle approaches the disk wall, its mobility decreases steadily and vanishes at the 
limit a l d  -+ 1. The boundary effects on the particle mobility and the fluid flow pattern 
in electrophoresis differ significantly from those of the corresponding sedimentation 
problem with which a comparison is made. 

1. Introduction 
A charged particle suspended in an electrolyte solution is surrounded by a diffuse 

cloud of ions carrying a total charge equal and opposite in sign to that of the particle. 
This distribution of fixed charge and diffuse ions is known as an electrical double 
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layer. When an electric field is imposed on the particle, a force is exerted on both 
parts of the double layer. The particle is attracted toward the electrode of its 
opposite sign, while the ions in the diffuse layer migrate in the other direction. This 
particle’s motion is called electrophoresis and has been applied to the particle 
characterization or separation in a variety of colloidal and biological systems. 

The electrophoretic velocity Uo of an isolated particle is related to the applied 
electric field Em by the Smoluchowski equation, 

U --Em. 4 
O - 4x7 

Here, 7 and E represent the viscosity coefficient and the dielectric constant, 
respectively, of the solution surrounding the particle, and 5 is the zeta potential 
associated with the particle surface. The ratio U,/E, is the electrophoretic mobility 
of the particle. Equation (1 . l )  applies to non-conducting particles of arbitrary shape, 
provided that the local radii of curvature of the particle are much larger than the 
thickness of the double layer surrounding the particle (Morrison 1970; Hunter 1987). 
On the other hand, the fluid velocity a t  the outer edge of the diffuse layer v, relative 
to the particle’s movement is related to the local electric field E, by the Helmholtz 
expression for electro-osmotic flows : 

Here the subscript s denotes fields a t  the solid surface (more precisely, the outer 
boundary of the thin double layer), which have no normal components. In deriving 
(1.1) and (1.2), the particle has been treated as locally flat, and the effects of the 
polarization of interfacial ions have been neglected. 

The Smoluchowski equation serves only for fluid media that extend to infinity in 
all directions. However, in practical applications of electrophoresis, colloidal particles 
are not isolated and will move in the presence of neighbouring particles and/or 
boundaries. Recently, much progress has been made in the mathematical analysis 
concerning the applicability of (1.1) for a charged particle surrounded by a thin 
double layer in a variety of bounded systems. Using a method of reflections, Chen & 
Keh (1988) analytically solved the problem of the electrophoretic motion of two 
arbitrarily oriented, freely suspended spheres with arbitrary ratios of radii and of zeta 
potentials. Corrections to Smoluchowski’s equation due to particle interactions are 
determined in a power series of r;: up to  O(r; l ) ,  where r I2  is the centre-to-centre 
distance between the particles. Based on a microscopic model (Batchelor 1972 ; Reed 
& Anderson 1980; Anderson 1981), the interaction effects between pairs of particles 
were utilized to find the effect of particles’ volume fraction on the average 
electrophoretic mobility in a bounded, dilute dispersion of rigid spheres with 
arbitrary size and/or zeta-potential distributions. The two-sphere problem of 
electrophoresis was also semi-analytically solved by Keh & Chen (1989a, b )  using 
spherical bipolar coordinates. This work extended the earlier effort of Reed & 
Morrison (1976) from two non-rotating spheres of identical radii to  two freely 
suspended spheres of arbitrary radii and provided convergent numerical solutions of 
the particle velocities for various separation distances between the particles. Using 
a boundary-collocation technique, Keh & Yang (1990) studied the axisymmetric 
electrophoretic motion of multiple spheres along their line of centres. In  this analysis, 
the spheres may differ in radius and in zeta potential and they are allowed to be 
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unequally spaced. The numerical results of particle-interaction effects could be 
obtained with good convergence even when the particles are touching one another. 

There are four important conclusions resulting from these investigations of the 
particle interactions in electrophoresis. First, the particle interaction effect on 
electrophoresis is in general much weaker than on sedimentation, because the 
disturbance to the fluid velocity field caused by an electrophoretic sphere decays 
faster (as r-3) than that caused by a settling sphere (as r-'), where r is the distance 
from the particle centre. Second, for the case of two spheres undergoing asymmetric 
electrophoretic motion, both particles rotate in the same direction, opposite to the 
case of two sedimenting spheres. Third, the influence on the interactions among 
particles in general is far greater on the smaller ones than on the larger ones. Fourth, 
the electrophoretic velocity of each particle is unaffected by the presence of the 
others if all of the particles in the suspension have the same zeta potential. The 
feature that there is no net effect of particle interactions in electrophoresis in an 
unbounded suspension of particles with identical zeta potential and thin double layer 
was also observed by using a unit cell model (Kozak & Davis 1989) and confirmed by 
a potential-flow reasoning (Anderson 1989; Acrivos, Jeffrey & Saville 1990). 

In  addition to the examinations of interaction effects among electrophoretic 
particles, the electrophoresis of a colloidal sphere in the proximity of fixed 
boundaries has also been theoretically studied in recent years. The electrophoretic 
motion of a sphere near an infinite plane wall, in a long circular tube, or along the 
centreline between two large parallel plates was investigated by Keh & Anderson (1985) 
using the method of reflections. The particle mobility was determined in a power 
series of A up to  O(h6),  where A is the ratio of the particle radius to the distance 
between the particle centre and the boundary. Ignoring the O( A') electro-osmotic 
effect, the leading boundary effect is O(h3),  which is weak in comparison with the O(h)  
effect for sedimentation. 

Utilizing bipolar coordinates, Keh & Chen (1988) obtained the exact solution for 
the problem of the electrophoresis of a freely suspended sphere parallel to a large non- 
conducting plane. The wall effect was found to  impede the particle velocity for 
moderate to  large separations ; however, closer to  the wall this velocity goes through 
a minimum a t  h x 0.77 and then increases as h + 1 ,  such that the particle moves 
faster when h 2 0.91 than it would at h + 0. Also, the electrophoretic particle rotates 
in the direction opposite to  that which would occur for a solid sphere settling near 
a parallel wall. On the other hand, the electrophoretic migration of a sphere normal 
to an infinite conducting plane was studied by Morrison & Stukel (1970) and the 
present authors (Keh & Lien 1989) using bipolar coordinates. I n  this .case, the 
particle mobility decreases monotonically as the particle approaches the wall and 
goes to  zero in the limit of A +. 1. 

All previous solutions for the wall-corrected electrophoretic velocity of a sphere 
have involved infinite planar or cylindrical surfaces. In  this paper we examine the 
axisymmetric electrophoretic motion of an insulating sphere along the axis of an 
orifice in a large conducting plane or of a conducting disk with a finite radius. The 
assumption of thin double layers adjacent to solid surfaces is employed throughout 
the analysis. The combined analytical-numerical procedure with a boundary- 
collocation technique, similar to  that described in Dagan, Pfeffer & Weinbaum 
( 1 9 8 2 ~ )  and Dagan, Weinbaum & Pfeffer (1982c), is used to solve the quasi-steady 
electrostatic and momentum equations applicable to the system. Corrections to  the 
Smoluchowski equation for the particle velocity are obtained with good convergence 
and the streamlines for fluid motion are presented for various cases. For the limiting 



308 H .  J. Keh and L .  C. Lien 

case of electrophoresis towards an orifice of zero opening area or a disk of infinite 
radius, our numerical results for the particle mobility show excellent agreement with 
the exact solution obtained by using bipolar coordinates. 

The paper is presented in six sections. In  $2 the problem of electrophoretic motion 
of a sphere along the axis of an orifice is formulated and its solution scheme is 
furnished. Based on this analysis, the numerical solutions for the movement of a 
sphere towards an orifice are obtained in $3. Section 4 contains the formulation and 
manipulations of a complementary problem to that treated in $2, the electrophoresis 
of a sphere along the axis of a disk. The numerical results for the disk-corrected 
velocity of the particle and their discussion are given in $5 .  

2. Formulation for the electrophoretic motion of a sphere toward an 
orifice 

In  this section we consider the axisymmetric electrophoretic motion of a non- 
conducting sphere of radius a towards a circular orifice of radius b in a perfectly 
conducting plane of zero thickness whose distance from the sphere is d ,  as shown in 
figure 1 .  Here, ( p ,  q5, z )  and ( r ,  8,$) denote the circular cylindrical and the spherical 
coordinates, respectively, and the origin of coordinates is chosen at the sphere centre. 
The uniformly applied electric field is expressed by E ,  e,, where e, is a unit vector in 
z-direction. The following analysis is valid up to the point where the sphere is tangent 
to the plane of the orifice. The thickness of electrical double layers is assumed to be 
small relative to the radius of the sphere and to the surface-to-surface spacing 
between the particle and the orifice wall. Gravitational effects are ignored. The 
objective is to determine the correction to Smoluchowski’s equation (1 .1)  for the 
particle due to the presence of the plane of the orifice. 

Before determining the electrophoretic velocity for the particle, the electrical 
potential and fluid velocity fields outside the particle must be solved. 

2.1. Electrical potential distribution 

The fluid outside the thin double layer is electrically neutral and is assumed to be of 
constant conductivity ; hence, the electrical potential distribution @(x) is governed 
by Laplace’s equation : 

The local electric field E(x)  equals -V@. The potential gradient far away from the 
particle approaches the undisturbed applied electric field and the normal component 
of the current flux a t  the surface of the insulating particle vanishes. Thus, the 
electrical potential is subject to the following boundary conditions : 

V2@ = 0. (2.1) 

(2.2a) 

@=-E,d a t  z = d a n d b < p c c o ,  ( 2 . 2 b )  

@+-E,z as r+m. (2.2c) 

The potential on the conducting plane of the orifice has been set equal to -Em d for 
convenience. 

To solve (2.1) and (2.2) we divide the potential field into two simply bounded 
regions: the half-space containing the sphere and bounded by the orifice wall, z < d,  
and the remaining infinite half-space, z 2 d .  This partitioning of the electric field 
establishes well-defined regions in which the solution for the potential distribution 
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FIQURE 1 .  Electrophoresis of a spherical particle along the axis of a circular orifice in an 
infinite conducting plane of zero thickness. 

can be obtained in terms of the unknown potential profile a t  the orifice opening. The 
essential mathematical problem is to match the solution in each region a t  the orifice 
opening to secure continuity of the potential and electric fields. This solution 
procedure was employed by Dagan et al. (1982 c )  to study the creeping motion of a 
sphere along the axis of an orifice. 

Since the governing equation and boundary conditions are linear, one can write the 
potential distribution @I for the region z < d as the superposition 

@I = @w+@s.  (2.3) 
Here, @w is a solution of (2.1) in cylindrical coordinates that represents the 
disturbances produced by the orifice and the wall approaching the plane z = d from 
the left plus the undisturbed applied electric potential and is given by 

GW = -E,z+ wR,(w)J,(wp)e""dw, 1: (2.4) 

where Jo is the Bessel function of the first kind of order zero and R,(w) is an unknown 
function of w .  The second term on the right-hand side of (2.3), as, is a solution of (2.1) 
in spherical coordinates representing the disturbances generated by the sphere and 
is given by 

(2.5) 
m 

@s = c T, r-(n+v,(cos el,  
n-0 

where P, is the Legendre polynomial of order n and T, are unknown constant 
coefficients. 

For the region z 2 d ,  it  is sufficient to represent all disturbances generated at the 
plane z = d by a Fourier-Bessel integral of the form given by (2.4), 

where R,(w) is an unknown function o f w .  Note that a solution of the forms of @I and 
@I1 given by (2.3)-(2.6) immediately satisfies boundary condition ( 2 . 2 ~ ) .  

A brief conceptual summary of the solution procedure to determine R,(w), R,(w) 
and T, is given below to help the readers follow the mathematical development. At 
first, boundary condition (2.2b) is satisfied along the orifice wall in each region. This 
permits the unknown function R,(w) to be determined in terms of the coefficients T, 
and the unknown potential profile a t  the opening of the orifice. Similarly, R,(w) can 
be determined in terms of the unknown potential at the orifice opening. Then, by 
matching the current flux a t  the orifice opening, the unknown orifice potential can 
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be obtained in terms of the coefficients T,. Finally, boundary condition ( 2 . 2 ~ )  on the 
surface of the sphere can be satisfied by making use of the collocation method and 
the solution of the collocation matrix provides numerical values for the coefficients 
T,. This solution procedure is valid up to the point where the sphere is tangent to the 
plane of the orifice. 

The electrical potential profile at the orifice opening can be defined in a general 

(2 .7)  

In the plane z = d ,  the potential equals - E ,  d for p 2 b and the potential and the 
current flux are continuous for p < 6 .  Thus the boundary conditions at the matching 
plane are mixed: 

@ ' ( p , d )  = @"(p ,d )  = (2 .8)  

Substitution of the solution given by (2.3)-(2.5) into the boundary condition 
(2 .8)  and application of Hankel transforms on the variable p lead to a solution for 
R,(w) in terms of the unknown coefficients T, and the unknown potential function 
h(p) .  The resulting potential field in the half-space containing the sphere is given by 

h*(w)Jo(wp)e-w'd-L'dw+ C T , [ B ~ ( p , z ) - B ~ ( p , 2 d - z ) ] ,  (2.10) = - E m ~ + J o r n  
m 

n=o 

b 

where h*(w) = wJo h(t)  Jo(wt) dt, (2.11) 

and B i ( p ,  z )  is defined by (A 7)  in the Appendix. It is easy to show that 

JOm h*(w) Jo(wp) dw = 0 (b  < p < 00). (2.12) 

Following a similar procedure, the boundary condition (2 .8)  can be satisfied by @I1 
in the form of (2 .6)  for the half-space z 2 d and R,(w) can be expressed in terms of 
the unknown function h(p)  for the potential a t  the orifice. Substituting this result for 
R,(w) into (2 .6)  one obtains 

@I1 = - E ,  z+ 1: h*(w) Jo(wp) ewCd-*) dw. (2.13) 

Although the potentials in (2 .10)  and (2 .13)  are still expressed in terms of the 
unknown coefficients Tn and the unknown function h, they do satisfy the boundary 
conditions (2.2 b) and ( 2 . 2 ~ )  and can properly represent any arbitrary potential 
profile at the orifice opening. 

Application of the matching condition (2 .9)  to (2.10) and (2 .13)  results in 

JOm oh*(@) Jo(wp) dw = H(p) (0 < p < b ) ,  (2 .14a)  
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Equations (2.14a) and (2.12) comprise a set of dual integral equations for the 
function h*(w). The solution of these dual integral equations follows from the results 
of Tranter (1951), yielding 

H(5)  x 
b 

= 2 2 T, lo Sn+l( t ,  d )  sin wt dt, 
x n=o 

(2.15) 

where the definition of S,(t,d) is given by (A 13). 

potential distribution for the two semi-infinite spaces is obtained : 
The result for h*(w) is substituted back into (2.10) and (2.13) and the electrical 

@‘=--E,z+ T, S,+l ( t ,d )g(p ,z , t )d t  , 

(2.16a) 
n-0 x 1 

(2.16 b )  

where K$(p ,  z, t) is defined by (A 14). Equation (2.16) provides an exact solution for 
the potential at the orifice opening and the unknown coefficients T, must be 
determined from the remaining boundary condition (2.2a) on the surface of the 
sphere. It should be noted that in the limiting case of an orifice with zero radius (i.e. 
an infinite plane wall), h ( p )  = h*(w) = 0 and the resulting solution for the potential 
field is 

@I = -E,z+ C Tn[B;(p,z)-BL(p,2d-2)]. (2.17) 
m 

n-0 

Utilizing the relation 
a a a 

ar aP az 
- sinO-+cosO-, - _  (2.18) 

The definite integrals in (2.19) must be performed numerically. 
To satisfy the condition (2.19) exactly along the entire semicircular generating arc 

of the sphere would require the solution of the entire infinite array of unknown 
coefficients T,. However, the collocation technique (O’Brien 1968 ; Gluckman, Pfeffer 
& Weinbaum 1971; Dagan et al. 1982~; Keh & Yang 1990) enforces the boundary 
condition a t  a finite number of discrete points on the sphere’s generating arc and 
truncates the infinite series (2.16) into a finite one. The unknown coefficient in each 
term of the series permits one to satisfy the exact boundary condition a t  one discrete 
point on the sphere surface. Thus, if the spherical boundary is approximated by 
satisfying condition (2.2a) a t  Ndiscrete points on its generating arc, the infinite series 
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in (2.16) is truncated after N terms, resulting in a system of N simultaneous linear 
algebraic equations in the truncated form of (2.19). This matrix equation can be 
solved by any of the standard matrix-reduction techniques to  yield the N unknown 
coefficients T, required in the truncated equation of (2.16) for the electrical potential 
distribution. The accuracy of the truncation technique can be improved to any 
degree by taking a sufficiently large value ofN. Naturally, as N +  00 the truncation 
error vanishes and the overall accuracy of the solution depends only upon the 
numerical integration required in evaluating the matrix elements. 

2.2. Fluid velocity distribution 

Having obtained a solution for the electrical potential distribution, we can now 
proceed to find the fluid velocity field. Because the Reynolds numbers of 
electrokinetic flows are small, the fluid motion outside the thin double layers is 
governed by the quasi-steady fourth-order differential equation for viscous 
axisymmetric flows, 

(2.21) 

in which the Stokes stream function Y is related to  the velocity components in 
cylindrical coordinates by 

E4Y = E2(E2!P) = 0, 

and the operator E2 has the form 

(2.22 a, b) 

(2.23) 

Since the electric field acting on the diffuse ions within the double layer a t  the 
particle surface produces a relative tangential fluid velocity at the outer edge of the 
double layer (apparent surface ‘slip velocity’) as given by (1.2) and the fluid is 
motionless a t  the conducting plane of orifice and far away from the particle, the 
boundary conditions for the velocity field are 

E!: 

47v 
v = Ue,+-V@ at  r = a, (2.24a) 

v = o  a t  z = d a n d b < p <  co, (2.24 6 )  
v = o  as r + c o ,  ( 2 . 2 4 ~ )  

where 6 is the zeta potential of the particle surface and U is the instantaneous 
electrophoretic velocity of the particle to be determined. Note that the normal 
component of W@ vanishes a t  the particle surface as required by ( 2 . 2 ~ )  and the 
angular dependence of the tangential electric field is obtained from the potential 
distribution given by (2.16) with coefficients determined from (2.19). 

Because the particle is freely suspended in the fluid and the particle ‘surface’ 
(which means the outer limit of the double layer) encloses a neutral body, the 
external fields produce no net force on the particle. Thus, the constraint of zero drag 
force exerted by the fluid on the particle surface must be satisfied, 

e,.rIIdS = 0, (2.25) 

where II is the fluid stress tensor and e, is the unit vector in the radial direction. For 
the axisymmetric motion considered in this section, the sphere translates without 
rotation and one can evaluate U by satisfying (2.25) after solving (2.21) and (2.24). 

= SSSST=. 
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In  view of the linearity of the governing equation (2 .21)  and the boundary 
conditions (2 .24 ) ,  the total flow can be decomposed into two contributions. First we 
consider the fluid motion about a sphere translating along the axis of an orifice with 
velocity Ue,. The Stokes equations for this flow were solved by Dagan et al. ( 1 9 8 2 ~ ) .  
They obtained the stream function ( Y1) for the flowing fluid and determined that the 
force exerted by the fluid on the particle can be written in the form 

Fl = -6nyaUu,  (2 .26)  

where u is the correction factor to Stokes' law due to the presence of the orifice wall. 
The value of u depends upon the ratios a l b  and a l d  and can be numerically computed 
using the boundary-collocation method. A first-order approximate solution for a has 
been obtained analytically by Davis, O'Neill & Brenner (1981) .  

We now consider the fluid flow caused by a stationary sphere situated on the axis 
of an orifice with a tangential electrokinetic velocity a t  the particle 'surface', 
prescribed by ( 2 . 2 4 ~ )  with U equal to  zero; namely, the boundary conditions at the 
particle surface become Er a@ 1 

(2 .27 )  

Superposition of this velocity field upon that formerly considered, caused by a sphere 
translating towards an orifice, yields the total fluid velocity field generated by the 
electrophoretic motion of a non-conducting sphere along the axis of a circular orifice. 
By obtaining the force F, acting on the stationary sphere, adding it to Fl given by 
(2 .26 )  and equating the sum to zero, Smoluchowski's equation with wall corrections 
will result. 

To find the drag force acting on the stationary sphere with a tangential velocity 
distribution a t  the surface, we divide the flow field into two regions just as we did for 
the electrical potential field. The stream function for the region z < d is linearly 
composed of two parts: 

Here Yw is a solution of (2 .21 )  in cylindrical coordinates that represents the 
disturbances produced by the orifice and the wall and is given by a Fourier-Bessel 
integral, 

yw = p d w P )  [X,(w)+zY,(w)1eWZdw, (2 .29)  

where J1 is the Bessel function of the first kind of order one and X , ( w )  and q ( w )  are 
unknown functions of w .  The second part of Y;, denoted by Us is a solution of (2 .21)  
in spherical coordinates representing the disturbances generated by the sphere and 
is given by the summation of a multipole series 

(2 .28 )  Y; = Yw+ Ys. 

a, 

Us = C (B, r-,+l + D, r-n+3) G,i(cos O ) ,  (2 .30)  

where G$ is the Gcgenbauer polynomial of the first kind of order n and degree -+; 
B, and D, are unknown constant coefficients. 

For the semi-infinite region z 2 d ,  an integral similar to the form of (2 .29)  is chosen 
for the stream function to represent the disturbances generated at  the plane of the 
orifice, 

!Pi1 = I:pJl(wp) [X,(w)+zY,(w)]e-'""dw. (2 .31)  

n-2 
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Here X 2 ( w )  and &(o) are unknown functions of w. Note that the boundary condition 
( 2 . 2 4 ~ )  is immediately satisfied by a solution of the forms of Yi and @Pi1 given by 

The velocity components a t  the orifice opening can be defined in a general form by 

%(P> d )  = f ( P ) / P ,  %&P> d ) = -9 (P) /P  (0 6 P < 6). (2.32) 

The kinematic boundary conditions in the matching plane z = d require that the 
velocity vanish for p 2 6 and that the velocity be continuous for p < b ;  namely, 

(2.28)-( 2.3 1 ). 

(2.33 a )  

(2.336) 

In addition, the dynamic matching of the two flow fields require that the stress 
tensor be continuous a t  the orifice opening. This condition can be replaced by 
matching the pressure and its gradient for p < b (Dagan, Weinbaum & Pfeffer 
1982 b )  : 

(2 .34a,  6) 

The expression for the pressure field in each region can be determined by integrating 
the following relation with the appropriate stream function representation : 

(2.35) 

Note that P'(z+- CO) = P"(z+ CO) for the fluid motion. 
Application of the boundary conditions (2.33) to  (2.28)-(2.31) using (2.22) leads to 

solutions for X , ( w ) ,  F ( w ) ,  X , ( w )  and & ( w )  in terms of the unknown coefficients B,  and 
D ,  as well as the unknown velocity functions f ( p )  and g ( p ) .  Furthermore, the 
functions f ( p )  and g(p)  can be solved in terms of the coefficients Bn and D, by utilizing 
the pressure matching conditions (2 .34) .  After considerable algebraic manipulation 
the velocity components for the region z < d are obtained in the form (Dagan et al. 
1982 c )  

(2 .36a)  

(2.36 6) 

where the functions f,, FA, S,, #A, p:, p:*, S: and S,** are defined by (A 1)-(A 14).  The 
velocity components for the other half-space ( z  2 d )  are 

(2.36 c )  

(2 .36d)  
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Although the velocity field in (2.36) is still expressed in terms of the unknown 
coefficients B, and D,, it  does satisfy the boundary condition (2.243) on the orifice 
wall and provide an exact solution for the velocity at the orifice opening. For the 
limiting case of an orifice with zero radius, f(p) = g(p)  = 0 and (2.36a, b )  can be 
simplified to  become 

W W 

vip = C [BnA(p,z)+Dn&(p,z)I, viz = C [ B n ~ ~ ( p , z ) + D n ~ ~ ( p , ~ ) I .  
11-2 n-2 

(2.37a, b )  

The only boundary conditions that remain to be satisfied are those on the sphere 
surface. Substituting ( 2 . 1 6 ~ )  into (2.27) one obtains the tangential fluid velocity a t  
the particle 'surface ' : 

2d - z)] 

o Pb 

Here the first N coefficients T, have been determined through the procedure given in 
$2.1. Application of these boundary conditions to  (2.36a, b )  can be accomplished by 
utilizing the collocation technique presented for the solution of the electrical 
potential field. At r = a, boundary conditions (2.38) are applied a t  M discrete points 
and the series solution (2.36) is truncated after M terms. This generates a set of 211 
linear algebraic equations for the 2M unknown coefficients B, and D,. The fluid 
velocity field is completely solved once these coefficients are determined. Note that 
the definite integrals in (2.36) and (2.38) must be performed numerically. 

The drag force exerted by the fluid on the spherical boundary r = a can be 
determined from (Happel & Brenner 1983) 

(2.39) 

Substitution of (2.28)-(2.30) into the above integral and application of the 
orthogonality properties of the Gegenbauer polynomials result in the simple relation 

F, = 47~7D,. (2.40) 

Equation (2.40) shows that only the first multipole contributes to the drag force 
exerted on the particle. Thus, the truncation procedure, which provides only an 
approximation to the actual boundary shape of the sphere, does not affect the drag 
result if the obtained value of D, is unchanged from its exact value. 

2.3. Derivation of the particle velocity 
Since the net force acting on the electrophoretic particle must vanish to satisfy the 
requirement of (2.25), one has 

Fl+F2 = 0. (2.41) 

Substitution of the individual forces given by (2.26) and (2.40) yields the particle 
velocity 

2 0  u = 2  
3aa 

(2.42) 

F L N  224 I 1  
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Clearly, the ratio of the two forces Fl and F, determines the electrophoretic mobility 
of the particle. By the linearity of the problem, the magnitude of the particle velocity 
is independent of the direction of travel. 

3. Solutions for the electrophoretic motion of a sphere toward an orifice 
The solution for the electrophoretic motion of a non-conducting sphere along the 

axis of an orifice, using the collocation technique described in the previous section, 
will be presented in this section. The results for the limiting case as a/b + 00 will be 
compared with the exact solution obtained by Keh & Lien (1989) for the 
electrophoresis of a sphere normal to an infinite conducting plane. (There is an error 
in equation (29) of Morrison & Stukel's (1970) analysis for this limiting case. It is 
likely that, because of this error, they failed to produce tabulated numerical results 
for the electrophoretic mobility of the particle.) The system of linear algebraic 
equations to be solved for coefficients T, is constructed from ( 2 . 1 6 ~ )  and the 
boundary condition (2.19), while that for B, and D, is composed of (2.36a, b)  and 
(2.38). When the sphere is migrating towards a plane wall, ( 2 . 1 6 ~ )  and (2.36u, b )  are 
simplified to (2.17) and (2.37) and the definite integrals in (2.19) and (2.38) vanish. 

When specifying the points along the semicircular generating arc of the sphere 
where the boundary conditions are to be exactly satisfied, the first point that should 
be chosen is 8 = in, since this point defines the projected area of the sphere normal 
to the direction of motion. I n  addition, the points 8 = 0 and 8 = x are important 
because they control the gap between the sphere and the plane a t  z = d.  However, 
an examination of the systems of linear algebraic equations (2.19) as well as (2.36a, 
b)  and (2.38) shows that the coefficient matrices become singular if these points are 
used. To overcome the difficulty of singularity and to preserve the geometric 
symmetry of the spherical boundary about the equatorial plane 8 = tx, points a t  
0 = a, ix - a, in + a and x - a are taken to be four basic collocation points. Additional 
points along the boundary are selected as mirror-image pairs about the plane 8 = ix 
to divide the two quarter-arcs of the sphere (more precisely, arcs with radian 
x/2-2a) into equal segments. The optimum value of a in this work is found to be 
0.01", with which the numerical results of the particle velocity can converge to a t  
least four significant digits for any ratios of particle-to-orifice radii a / b  with u/d up 
to 0.9. 

Numerical values of the wall-corrected reduced electrophoretic mobility for a 
sphere moving along the axis of a relatively small orifice (with a / b  = 10) for various 
spacings are presented in the first and second columns of table 1. The corresponding 
numerical solutions for the electrophoresis of a sphere perpendicular to an infinite 
plane wall are given in the third column of the same table. All of the results obtained 
under this collocation scheme converge to a t  least five significant figures. The 
accuracy of the truncation technique is principally a function of the relative spacing 
a /d .  For the difficult case of a/d = 0.9 (for a / b  = 10) and a/d = 0.99 (for a/b+ co), 
the numbers of collocation points N = 72 and M = 60 are sufficiently large to achieve 
this convergence. The solutions for the electrophoretic motion of a sphere normal to 
a conducting plane obtained by using spherical bipolar coordinates (Keh & Lien 
1989) are also listed in the last column of table 1 for a comparison. It can be found 
that the results from the collocation technique agree remarkably well with the exact 
results for all relative spacings between the sphere and the plane wall. The 
electrophoretic mobility of a sphere moving along the axis of an orifice with a 
relatively small radius is, as expected, in perfect agreement with that for a sphere 



Electrophoresis of a colloidal sphere 317 

a Orifice with a/b = 10 Infinite plane Infinite plane 

d collocation technique collocation technique bipolar coordinates - 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.97 
0.98 
0.99 

0.99938 
0.99504 
0.98330 
0.96022 
0.92098 
0.85898 
0.76429 
0.621 70 
0.408 84 
- 

0.99938 
0.995 04 
0.983 30 
0.96020 
0.92089 
0.85862 
0.76297 
0.61631 
0.38584 
0.21993 
0.1 39 79 
0.09605 
0.04979 

0.999 38 
0.99504 
0.983 30 
0.960 20 
0.920 89 
0.85862 
0.76297 
0.61631 
0.38584 
0.21993 
0.13979 
0.09608 
0.049 60 

TABLE 1.  The normalized electrophoretic mobilities for the motion of a sphere along the axis of an 
orifice with the ratio of radii a/b = 10 and for the motion of a sphere normal to an infinite plane 

migrating toward an infinite plane wall unless the gap thickness between the sphere 
and the wall is very small. This agreement demonstrates the accuracy of the 
numerical solution obtained using the collocation technique. 

The numerical results for the normalized electrophoretic mobility for various 
dimensionless sphere radii and sphere-to-wall spacings are presented in the first three 
columns of table 2 and plotted in figure 2. For the motion of a sphere on which a 
constant body force Pe, (e.g. a gravitational field) is applied along the axis of a thin 
orifice, the particle velocity was obtained by using the point-force approximation 
(Davis et al. 1981) and the boundary-collocation technique (Dagan et al. 1982~) .  The 
Stokes-law correction for the sphere with various ratios of alb and ald has been 
computed and the collocation results are given in the last column of table 2 for 
comparison. Examination of the data shown in table 2 and figure 2 reveals an 
interesting feature. Both of the electrophoretic and hydrodynamic mobilities for a 
sphere whose radius is smaller than that of the orifice increase when the sphere is 
close to the orifice. Moreover, the electrophoretic mobility for a sphere near the 
opening can even be greater than that for an identical sphere undergoing 
electrophoresis in an unbounded medium. The reason that the electrophoretic 
velocity of the particle can be enhanced by the neighbouring orifice is partly due to 
the decreasing effective wall-interaction area that offers hydrodynamic resistance to 
the motion of a small sphere as it approaches the opening; the numerical results for 
the Stokes-law correction demonstrate this effect. However, a normalized electro- 
phoretic mobility greater than unity is only possible because of the crowding of 
the electric field lines when they squeeze between the sphere and the orifice edge, 
which increases the local electrical force driving the particles’ motion (Keh &, Chen 
1988). In figure 3, the electric field lines for the case of a lb  = 0.75 and a/d = 0.9 are 
exhibited. The local electric field at  the sphere ‘surface ’ on the near side to the plane 
of the orifice appears to be enhanced in comparison with that on the far side. 
Obviously, the influence of this enhancement on the particle velocity can be very 

11-2 
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1 .o 

2.0 

~~ 

Electrophoresis Sedimentation 
a a 4n7 u 6 n ~ a U  

b d 4E%, F 

0.5 0.1 0.9994 0.890 
0.2 0.997 0.799 
0.3 0.994 0.746 
0.4 0.996 0.724 
0.5 1.001 0.718 
0.6 1.007 0.719 
0.7 1.013 0.721 
0.8 1.018 0.724 
0.9 1.021 0.726 

0.1 0.9994 0.888 
0.2 0.995 0.782 
0.3 0.986 0.687 
0.4 0.973 0.61 1 
0.5 0.961 0.554 
0.6 0.954 0.513 
0.7 0.955 0.483 
0.8 0.963 0.459 
0.9 0.977 0.439 

0.1 0.9994 0.888 
0.2 0.995 0.779 
0.3 0.984 0.674 
0.4 0.963 0.576 
0.5 0.930 0.487 
0.6 0.887 0.408 
0.7 0.837 0.340 
0.8 0.778 0.277 
0.9 0.705 0.215 

- - ~ 

TABLE a. Comparison of the normalized velocities of a sphere moving along the axis of an orifice 
for a selection of the cases of electrophoresis and sedimentation shown in figure 2 (data rounded to 
three decimal places) 

important and even stronger than the effect of viscous retardation caused by the wall 
for alb < 1 and a ld  -f 1. 

On the other hand, if a sphere has a relatively large radius compared with that of 
the orifice, or if a sphere has smaller radius and is located sufficiently far from the 
orifice, both the electrophoretic and hydrodynamic mobilities decrease with the 
increase of the spacing parameter a l d .  For these cases the boundary wall behaves like 
an infinite solid plane which enhances the viscous retardation of the particle as it 
tries to move in response to the applied field. The increase of the electrical driving 
force on the particle’s surface in the gap region (if there is any), which tends to speed 
up the electrophoretic sphere, is not strong enough to compensate for the larger 
viscous drag of the wall. In  fact, for the limiting case of electrophoresis of a sphere 
normal to an infinite plane, the wall effect on the interaction between particle and 
electric field will reduce rather than enhance, the particle velocity (Keh & Anderson 
1985). According to  figure 2 and table 2 ,  a plot of the normalized electrophoretic 
mobility versus alb  a t  a ld  = 0.9 would show a maximum. This maximum value 
appears a t  alb  x 0.63 and is about 2.6% higher than the Smoluchowski’s result with 
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2. Plots of the normalized electrophoretic mobility of a sphere migratir along the axis of 
an orifice versus the separation variable a/d  with the ratio of radii a/b  as a parameter. 

FIGURE 3. Electric field lines for the electrophoretic motion of a sphere along the axis of an 
orifice with a/b = 0.75 and a/d = 0.9. 

the boundary being far away from the particle or for the case of a/b+O. It should 
be noticed that, in general, the wall effect on electrophoresis toward an orifice is much 
weaker than that on the corresponding motion driven by a body force, as was 
observed for the electrophoresis near a plane wall or inside a long pore (Keh & 
Anderson 1985). 

The fluid flow resulting from electrophoresis is force-free and is thus irrotational. 
The primary disturbance caused by the particle is that of a potential doublet, in 
contrast to the Stokeslet dominated disturbance exhibited by a particle moving 
under the influence of a body force. For the electrophoretic motion of a colloidal 
sphere along the axis of an orifice, the stream function for the flowing fluid can be 
evaluated from the combination of !PI obtained by Dagan et al. (1982~)  and !Pz given 
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FIGURE 4. Streamlines for the electrophoretic motion of a sphere along the axis of an orifice with 
a/b = 2.0 and a/d = 0.5. Curve 1 ,  4qY/a2e[E%, = -0.075; 2, -0.01; 3, -0.007825; 4, 0;  5, 
0.0125; 6, 0.02. 

FIGURE 5. Streamlines for the electrophoretic motion of a sphere along the axis of an orifice with 
a/b = 0.5 and a/d = 0.5. Curve 1 ,  4n~lY/a%[E, = -0.24; 2, -0.1734; 3, -0.12; 4, -0.04; 5, 0;  
6, 0.04; 7, 0.12. 

by (2.28)-(2.31) with coefficients determined by the boundary-collocation technique. 
The streamlines for the situation when the radius of the sphere is relatively large 
compared with that of the orifice are depicted in figure 4. The contour pattern 
illustrates the distortion of fluid recirculation around the sphere due to the orifice 
wall in the proximity. The existence of a toroidal ‘inner’ circulation pattern for 
electrophoresis corresponds to that of a potential dipole. I n  addition to  the local 
inner recirculation region in the vicinity of the sphere, there are two toroidal ‘outer’ 
recirculation regions on the side z < d ,  swirling in opposite directions, far away from 
the particle. Note that the fluid flow contains a circle (around the axis) of stagnation 
points where the inner recirculation region and one of the two outer recirculation 
regions meet each other. Also, two more stagnation points, one in each half-space, 
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FIGURE 6. Streamlines for the sedimentation of a sphere -along the axis of an orifice with 
a/b=0.5anda/d=0.5.Curve 1 ,  !P/a2U=-1.6; 2, -1.2; 3, -0 .4 ;4 ,0 ;5 ,0 .12 .  

appear on the axis of the orifice. The circulating streamline Y = 0 intersects the axis 
at these points orthogonally. The relative position of each stagnation point with 
respect to the orifice depends on the ratios a l b  and a l d ,  but is independent of the 
electrophoretic velocity of the particle. For the limiting case as a / b +  00 

(electrophoresis normal to an infinite plane), the circle of stagnation points will shift 
onto the plane wall and only one outer recirculation region (instead of the two shown 
in figure 4) exists in a meridian plane (Keh & Lien 1989). 

The streamline pattern for the case when the radius of the electrophoretic sphere 
is smaller than or comparable with that of the orifice is drawn in figure 5. In  the half- 
space z < d ,  the flow still contains a circle of stagnation points, but there is only one 
outer recirculation region in each meridian plane and no stagnation point appears on 
the axis of symmetry. Note that, the direction of this outer recirculation is opposite 
to that for the electrophoretic motion of a sphere perpendicular to an infinite plane. 

Figure 6 corresponds to the typical streamline pattern for the case of a sphere 
moving along the axis of an orifice driven by a body force, which can be made by 
obtaining !PI only. In comparison with the situations of electrophoresis toward an 
orifice, the presence of the boundary wall causes no inner-and-outer recirculation in 
the region x < d for the motion under gravity. This is because the disturbance to the 
fluid velocity field caused by an electrophoretic sphere decays much faster than that 
caused by a Stokeslet. It should be noticed from figures 4-6 that the streamline 
pattern for the half-space z > d for electrophoresis resembles that for sedimentation, 
and the direction of the bulk flow in the axial region is opposite to that of the 
movement of the particle. 

4. Formulation for the electrophoretic motion of a sphere normal to a disk 
The axisymmetric electrophoresis of a non-conducting sphere of radius a towards 

a circular disk of radius b located at a distance d from the sphere centre is considered 
in this section, an inverse geometry to that studied in $2. The disk is assumed to be 
perfectly conducting and of zero thickness. The sphere centre is chosen to be the 
origin of the coordinate frame, as shown in figure 7,  and the uniformly applied 
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FIGURE 7 .  Electrophoresis of a spherical particle along the axis of a conducting circular disk of 
zero thickness. 

electric field is expressed by E ,  e,. The thin-double-layer assumption is employed. 
Our purpose here is to determine the electrophoretic velocity of the particle in the 
proximity of the disk. 

Similar to the problem considered in $2, both the electrical potential and the fluid 
velocity fields outside the particle have to be solved to determine the particle 
velocity. 

4.1. Electrical potential distribution 

The potential field is divided into two regions, the semi-infinite space containing the 
sphere, z < d ,  and the remaining half-space z 2 d. Then, the solution in the forms of 
(2 .3)-(2.6)  and the boundary conditions given in (2 .2a)  and ( 2 . 2 ~ )  are all valid here. 
However, in the case of a disk at the plane z = d,  the boundary condition (2 .2b)  
should be replaced by 

@ = -E,d at z = d and 0 < p < h.  (4 .1)  
The electrical potential a t  the plane of the disk is defined by 

( h  < p < co). 

Thus, mixed boundary conditions in the matching plane become 

(4 .2)  

(4 .3)  

(4 .4)  

Application of the boundary conditions (4.3) to the solution of @I and @I1 given by 
(2 .3)-(2.6)  and utilization of Hankel transforms provide solutions for R, (w)  and R,(w) 
in terms of the unknown T, and h ( p ) .  The resulting potential field for the two regions 
can also be expressed by (2 .10)  and (2 .13) ,  with the definition of h*(w) in (2.11) being 
replaced by 

h*(w)  = w h(t) Jo(wt) dt. (4 .5)  S,i 
fi wh*(w) Jo(wp) dw = W p )  (b  < p < a), 

Substituting (2.10) and (2.13) into the matching condition (4 .4) ,  one obtains the 
relation 

(4 .6)  

where H ( p )  has the same form as (2.14b).  
Equation (4 .6)  together with 

1; h*(w) JJwp) dw = 0 (0 < p d b) (4 .7)  
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comprise a set of dual integral equations for h*(w). The solution of these dual integral 
equations is given by Tranter (1951) : 

where 

h*(w) = dscos (ts)H*(s), 

wn 

n-0 12. 

m 

tH(t)Jo(wt)dt = C T,7e-wd. 

Substitution of (4.9) into (4.8) yields 

(4.9) 

(4.10) 

where C,(t,d) is defined by (A 19). 

substituting (4.10) back into (2.10) and (2.13), with the result 
The electrical potential field for the two semi-infinite regions is obtained by 

m 

GI = -Em z+ x Tn [.",(p, 2) -:J:~n+l(t,d) ~ ; ( p ,  2, t )  dt], (4.11a) 
n-0 

where the definition of Qf(p,  z, t )  is given by (A 20). The unknown coefficients T, in 
(4.11) are to be determined from the remaining boundary condition ( 2 . 2 ~ )  on the 
particle surface. Note that (4.11 a )  reduces to (2.17) for the limiting case of a disk with 
infinite radius (b+  a). 

Applying the relation (2.18) and boundary condition ( 2 . 2 ~ )  to (4.11u), one obtains 

2 Tn { pAn(p, 2) - (n + 1) z~ ' ;+ l (p ,  2) - Cn+l(t, d ) Q ~ ( P ,  2, t )  dt 
n-0 

where A,(p, z )  is given by (2.20). Now, the collocation technique described in $2 can 
be used. The infinite series in solution (4.11) and boundary condition (4.12) are 
truncated after N terms and the truncated form of (4.12) is applied at N discrete 
points along the particle surface. This generates a system of N linear algebraic 
equations for N unknown coefficients T,. Once these coefficients are determined, the 
solution for the electrical potential field is completely known. 

4.2. Fluid velocity distribution 

For the case of the electrophoretic motion of a sphere along the axis of a disk 
considered in this section, (2.21)-(2.25) are still valid, except that the boundary 
condition (2.24 b) is replaced by 

v = 0 a t  z = d and 0 < p  < b. (4.13) 

The total fluid flow is decomposed into two parts. First, the flow caused by a sphere 
translating along the axis of a circular disk with velocity Ue, is considered. The 
Stokes equations €or this flow have been solved using the boundary-collocation 
method by Dagan et al. ( 1 9 8 2 ~ )  and the drag force acting on the sphere can be 
expressed as 

Fl = -6nyaUy, (4.14) 
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where the wall-correction factor y is related to the ratios alb and ald. Next, we 
consider the fluid motion concerning a stationary sphere located on the axis of a disk 
with a tangential electrokinetic velocity given by (2.27) at the particle surface. 
Superimposing this velocity field with that caused by a sphere translating along the 
axis of a disk yields the total velocity field produced by the corresponding 
electrophoretic motion. By obtaining an expression for the force exerted on the 
stationary sphere, adding it to the force given by (4.14) and equating the sum to zero, 
the wall-corrected electrophoretic velocity of the particle will result. 

Again, we divide the flow field about the stationary sphere with a tangential 
velocity distribution a t  the surface into two semi-infinite regions. The plane of the 
disk, z = d, is the interface between the two regions. The solution in the forms 
(2.28)-(2.31) are also valid here. The velocity components a t  the plane of the disk are 
defined by 

"ZAP9 d )  = f ( P ) l P  ( b  < < *). (4.15) 

Consequently, the kinematic boundary conditions in the matching plane z = d 
become 

.ZP(P, d ) = - d P ) / P  I 
(4.16a) 

(4.166) 

The dynamic matching conditions are still given by (2.34), but now for p > 6. 
Application of conditions (4.16) and (2.34) to (2.28)-(2.31) leads to solutions for the 

unknown functions X , ( w ) ,  Y , ( o ) , X , ( w ) ,  yZ(w), f ( p )  and g(p) in terms of the unknown 
coefficients B,  and D,. These results are substituted back into (2.28)-(2.30) and the 
velocity field for the half-space z < d can be obtained, after considerable algebraic 
manipulation, in the form (Dagan et al. 1982a) 

(4.17 a) 

(4.176) 

Here, the functions R,, Rk, DL, D i ,  BZ, BZ*, D: and D:* are defined by (A 5)-(A 8) 
and (A 15)-(A 20). Similarly, the velocity components for the other half-space are 

n-2 
n 
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4n7u - 

a 
d a/b  = 0 a/b = 0.1 a/b  = 0.25 
- 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

0.999 38 
0.99504 
0.983 30 
0.960 20 
0.92089 
0.858 62 
0.76297 
0.61631 

0.99929 
0.99508 
0.983 39 
0.96029 
0.92099 
0.858 72 
0.762 98 
0.60300 

0.999 10 
0.993 7 1 
0.98229 
0.960 12 
0.921 56 
0.859 74 
0.76424 
0.61749 

TABLE 3. The normalized electrophoretic mobilities for the motion of a sphere along the axis of a 
circular disk with the ratio of radii a/b = 0, 0.1, and 0.25 

For the limiting case of a disk with infinite radius, the resulting solution for the 
velocity field in the region z < d is identical to that given by (2.37). 

The unknown coefficients B, and D, in (4.17) are to be determined from the 
boundary condition on the particle surface. Substitution of (4.11 a)  into (2.27) 
provides the tangential velocity components a t  the particle 'surface ' 

( 4 . 1 8 ~ )  

(4.18b) 

To use the collocation technique, the infinite series in (4.17) are truncated after M 
terms and the boundary conditions (4.18) (in which the coefficients T, are determined 
through the procedure given by $4.1) are applied at M discrete points along the 
surface of the sphere. The resulting system of 2M linear algebraic equations can be 
solved to yield the 2M unknown coefficients B,  and D,. The velocity field is 
completely determined once these coefficients are obtained. Note that the drag 
exerted by the fluid on the sphere is still given by (2.40). 

4.3. Derivation of the particle velocity 
The net force acting on the electrophoretic particle, which is the combination of the 
two forces given by (4.14) and (2.40), must vanish. This restraint results in the 
electrophoretic velocity of the particle 

(4.19) 

5. Solutions for the electrophoresis of a sphere normal to a disk 
In 53 collocation solutions for the electrophoretic motion of a non-conducting 

sphere along the axis of orifice have been presented and were shown to be in perfect 
agreement with the exact solutions for the limiting case. This section will examine 
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1 .o 

5.0 

Electrophoresis Sedimentation 
a a 4x7 l J  6xyaU - - ~ 

b d s u m  F 

0.5 0.1 0.9994 0.947 
0.2 0.993 0.823 
0.3 0.976 0.686 
0.4 0.950 0.564 
0.5 0.911 0.459 
0.6 0.852 0.364 
0.7 0.762 0.274 
0.8 0.620 0.185 
0.9 0.391 0.095 

0.1 0.9997 0.972 
0.2 0.995 0.896 
0.3 0.978 0.786 
0.4 0.942 0.660 
0.5 0.884 0.528 
0.6 0.801 0.402 
0.7 0.693 0.288 
0.8 0.552 0.186 
0.9 0.349 0.093 

0.1 0.99993 0.994 
0.2 0.9989 0.978 
0.3 0.995 0.952 
0.4 0.983 0.920 
0.5 0.959 0.881 
0.6 0.913 0.833 
0.7 0.824 0.764 
0.8 0.631 0.637 
0.9 0.193 0.364 

TABLE 4. Comparison of the normalized velocities of a sphere moving along the axis of a circular 
disk for a selection of the cases of electrophoresis and sedimentation shown in figure 8 (rounded to 
three decimal places) 

the solutions for the axisymmetric electrophoretic motion of a sphere toward a 
circular disk using the same collocation method. The system of linear algebraic 
equations to be solved for T, is constructed from (4.1 1 a )  and (4.12), and that for B,  
and D ,  is provided by (4.17a, b)  and (4.18). 

In table 3, numerical solutions of the wall-corrected electrophoretic mobility for a 
sphere migrating along the axis of a large disk are presented. These solutions 
converge to a t  least five significant figures for all the given values of a/d (up to 0.8). 
It can be seen that the results for a sphere with a radius one tenth as large as that 
of the disk (a lb  = 0.1) agree quite well with those for a sphere undergoing 
electrophoresis perpendicular to an infinitely large disk (a /b  = 0). Even for a sphere 
with a / b  = 0.25, its electrophoretic mobility differs less than 0.2 YO from that for the 
case a/b  = 0. 

The numerical results for the normalized electrophoretic velocity of a sphere 
migrating toward a disk with various values of a / b  and a/d  are shown in the first 
three columns of table 4 and depicted in figure 8. The Stokes-law correction for a 
sphere in the same geometrical system was obtained by Dagan et al. (19824 and the 
corresponding results are computed and listed in the last column of table 4 for 
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FIGIJRE 8. Plots of the normalized electrophoretic mobility of a sphere migrating along the axis 
of a circular disk versus the separation variable a/d  with the ratio of radii a / b  as a parameter. 

FIGURE 9. Electric field lines for the electrophoretic motion of a sphere along the axis of a 
circular disk with a/b  = 1.0 and a / d  = 0.9. 

comparison. An interesting feature is observed in tables 3 and 4 and figure 8: for a 
sphere close to a circular disk of a comparable or larger radius, both its electrophoretic 
and hydrodynamic mobilities can be lower than those for a sphere translating toward 
an infinite plane wall. These results reflect the fact that the sharp edge and back 
surface of a finite disk introduce a strong resistance to the fluid motion caused by a 
migrating particle and this resistance can be greater than that produced by the 
additional surface of an infinite wall. No matter what the ratio of sphere-to-disk radii 
is, both of the electrophoretic and hydrodynamic mobilities decrease steadily as the 
particle approaches the disk wall (with increasing a / d  ), going to zero a t  the limit. The 
wall effect on electrophoresis toward a disk in general is also much weaker than that 
for sedimentation, an exception being the case when both a/b  and a /d  are large (in 
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FIGURE 10. Streamlines for the electrophoretic motion of a sphere along the axis of a circular disk 
with a/b  = 0.25 and a/d = 0.5. Curve 1 ,  4qY/a2sCEm = -0.14; 2 ,  -0.04; 3 ,  0 ;  4, 0.008; 5 ,  0.04; 
6, 0.07. 

FIGURE 11. Streamlines for the electrophoretic motion of a sphere along the axis of a circular disk 
with alb = 1.0 and a/d  = 0.5. Curve 1, 4 x ~ Y / a 2 s @ m  = -0 .5;  2 ,  -0.15; 3, 0;  4, 0.2; 5,  0.8. 

which the wall effect on the interaction between particle and electric field is to 
decrease the particle velocity significantly). As a comparison to figure 3, the electric 
field lines for the case of a disk with a/b  = 1.0 and a /d  = 0.9 are drawn in figure 9. 
The local electric field a t  the sphere ‘surface’ on the near side to the disk is depressed 
compared with that on the far side. This demonstrates that the effect of the disk on 
the interaction between particle and electric field will reduce the electrophoretic 
velocity of the particle. 

The streamline pattern for the electrophoretic motion of an insulating sphere along 
the axis of a conducting disk with a larger radius is drawn in figure 10. In addition 
to the local ‘inner’ recirculation around the sphere, there is an ‘outer’ recirculation 
extending to the whole remaining fluid phase. The direction of this outer recirculation 
in the axial region is opposite to that of the particle’s movement. 
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FIGURE 12. Streamlines for the sedimentation of a sphere along the axis of a circular disk with 
a / b  = 1.0 and a/d = 0.5. Curve 1 ,  Y/a2U = -4.0; 2, -2.0; 3, -1.0; 4, -0.3; 5, 0;  6, 0.5. 

For the electrophoretic motion of a sphere whose radius is larger than or 
comparable with that of the disk, the distortion of the flow field due to the presence 
of the disk is illustrated in figure 11. In  each meridian plane, two outer recirculation 
regions that swirl in opposite directions appear. Compared to the case shown in figure 
10 for a larger disk, there is no stagnation point on the disk other than its centre in 
figure 11. Also, the direction of axial flow in the region z 2 d is the same as that of 
the electrophoresis. 

In  figure 12, the situation for a sphere sedimenting along the axis of a disk is 
considered. Contrary to the streamline patterns for electrophoresis, there is no inner- 
and-outer recirculation or stagnation point on the disk other than its centre in the 
fluid motion, no matter what the ratio a l b  is. Note that there is a stagnation point 
on the axis in the region z < d,  similar to the situations of electrophoresis shown in 
figures 10 and 11. 

6. Concluding remarks 
The electrophoresis of colloidal spheres approaching a perfectly conducting solid 

surface is often encountered in the electrophoretic deposition of dielectric materials. 
It is important to understand if the solid surface significantly affects the movement 
of the spheres. In  this work, the solutions for the axisymmetric, electrophoretic 
motion of a spherical particle with a thin electrical double layer normal to a 
conducting plane with a circular orifice and normal to a conducting disk have been 
obtained. I n  the limit of a small orifice and a large disk, our solutions agree very well 
with the exact solution for the electrophoretic motion of a sphere normal to an 
infinite conducting plane. Some interesting results which differ significantly from 
those of the corresponding sedimentation problem have emerged. The electrophoretic 
mobility for a particle approaching an orifice larger than the particle diameter can 
be enhanced, owing to the feature of squeezed electric field lines in the gap between 
the particle and the orifice edge. On the other hand, the mobility for a particle 
undergoing electrophoresis toward a disk can be reduced significantly, because the 
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wall effect on the interaction between particle and electric field in this situation is to 
decrease the particle velocity. The Stokes stream function for the fluid flow in four 
representative cases of electrophoresis has been presented in figures 4, 5, 10 and 11, 
while the streamline pattern for the corresponding cases of sedimentation is shown 
in figures 6 and 12 for comparison. Both figures 4 and 5 show the remarkable feature 
that the flow field for the electrophoresis of a sphere toward an orifice contains a 
circle of stagnation points. 

I n  addition to the electrophoretic deposition, another scientific application of the 
electrophoretic motion of particles toward an orifice occurs in a Coulter counter 
designed not only to count and size particles but also to determine their zeta 
potentials (DeBlois & Bean 1970). In  spite of the fact that the Coulter counter 
employs an insulating plane with an orifice, not the conducting plane assumed here, 
our solution method may still be used to solve the problem after the boundary 
conditions at the plane of the orifice have been properly modified. Also, in practical 
applications of electrophoresis, the particles can approach an orifice or a disk on an 
off-centre path. It would be of interest to  know if the hydrodynamic and electrostatic 
forces tend to push the particle more off-centre or to bring it back to the centreline. 
This asymmetric problem is now under investigation and will be presented in a 
subsequent article. 
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China. 

Appendix 
For conciseness the definitions of some functions in §§2 and 4 are listed here. It 

should be noted that there are several typographical errors in the original formulae 
given by Dagan et al. (1982a, c).  

m p ,  2 )  = %(p, 4 -B’,(p, 2d - 2 )  + 2(n + 1) (d - 4 %+,(p, 2d - z ) ,  

rn(p ,  2 )  = D’,(p, 2) --D’,(p, 2d-2) - (2/n) ( n -  1 )  ( n - 3 )  (d - z )Bn- , (p ,  2 d - 2 )  

rh(p,  z )  = BA(p, 2 )  -BL(p, 2d-2) - 2(n + 1 )  (d-  ~ ) B h + ~ ( p ,  2d-z), 

Cq(p, 2) = D’A(p, 2) -DL(p, 2d - 2) + 2(n- 2) (d- 2) &,(p, 2d - 2) 

(A 1)  

+ 2 ( 2 n - - ) d ( d - ~ ) B : , ( p , 2 d - Z ) ,  (A 2) 

(A 3) 

- 2 ( 2 n - 3 ) d ( d - z ) B ’ ~ ( p , 2 d - z ) ,  (A 4) 

where 



where 

where cos [ n tan-1 (31 , 
(t2+d2)tn 

C,(t, d )  = 

&$(p, z ,  t )  = O'"J,(wp) e-wld-zl cos (wt )  dw. (A 20) 1: 
The integral defined by (A 14) and (A 20) can be evaluated by the following 
formulae : 

(A 21 a, b )  
t -x  tz-xz 

K;'(p, 2 ,  t )  = - , K!(p, 2, t )  = Id- 21 - , 
P 

X 
K:(p, z ,  t )  = - t2  - x2 { (d  - Z ) Z  [. + ( t 2  - 2 2 )  (; + -31 - a}, K:(p, 2,  t )  = - , 

pxa2 0- 

(A 21c, d )  
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(A 21 e )  

(A 22d, e )  
where x and y are the positive roots of the algebraic equations 

x4 + [ (d-  z)2 +p2 - t2]  2 2  - P ( d -  2 ) 2  = 0, (A 23) 
y4 - [ (d - 2)2 +p2 - t2]  y2 - t2(d - 2 ) 2  = 0, 

and (T is defined by 
r = { [ (d - z ) ~  + p2 - t2I2 + 4t2 (d - 2)")". 
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